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ABSTRACT 

Different types of statistical treatments are appropriate for eva l u­
ating measurements of different physical properties of snow. For density 
measurements, the mean and standard deviati on of the measurements are 
meaningful parameters. In the case of strength measurements, the mean is 
not a very useful parameter, and some type of extreme-value statist i cs 
shou l d be used. Wei bull statistics appear to be appropriate for tensile 
strength data, while the thread bundle statistics of Danie l s appear appro­
priate for the evaluation of shear strength data. 

Introduction 

Snow is a variable material; since most of its variations are random, statistical methods are 
indispensable in evaluating its behavior . Until recently, the statistical techniques applied to 
snow have been fairly simple. They have largely consisted of the calculation of the mean and 
sometimes of the standard deviation or confidence intervals of a series of measurements. Gener­
ally the measurements show such large scatter that attempts to correlate the various properties of 
snow have been frustrated. 

Statistical techniques are available which can aid in a much better understanding of the 
behavior of snm" and the relationships among its properties. It is necessary to use different 
kinds of statistical presentations, however, to extract the needed information from a series of 
experimental measurements. The appropriateness of a particular statistical technique depends on 
the properties being measured and the information desired from the measurements . As examples, we 
will examine statistical techniques which may be applied to density, brittle tensile strength, and 
shear strength data. Since the presence of free water in snow adds complications, this discussion 
will be limited to dry snow, although mos t of the concepts can be applied to wet snow as well . 

None of the arguments presented are intended to be exhaustive. They are, rather, first 
attempts in this field; if they find application it will certainly be with extensive additions and 
modifications. 

Snow Density 

Dry snow is an intricate network of interconnecting ice crystals surrounded by air. The 
physica l properties of i ce and air are very different, and the volume ratio of ice to air can vary 
by over an order of magnitude. It seems obvious that the physical properties of snow must be 
related in very basic ways to the relative volumes of ice and air in a sample. The easiest mea­
sure of relative volumes is the density of the snow sample. 

The variability of snow density is highest on a microscopic scale. If we were to proceed 
through a volume of snow taking 0.1 mm 3 samples at random, we would find some samples that were 
pure ice and some that were pure air. The data would range over values different by a factor of 
10 3

, but their mean value would be a measure of the bulk density of the total volume under consid­
eration. Later we will see that this simple relationship between large and small samples does not 
hold for all of the properties of snow. 

If consideration is restricted to density variations within major layers, the minor layering 
can be treated as statistical variations within the major layers. A careful study of the coeffi­
cients of variation within various sample volumes would answer the question of whether or not the 
densities of the major layers in an avalanche starting zone can be adequately determinEd from 
samples taken in a smaller volume. No study has been carried out with this approach in mind, but 
some data are available from other studies. 

Martinelli (1971) measured the densities of 84 pairs of samples, each pair taken within a 
major layer. Each pair of 0.5 x 10-3m3 samples was taken in close proximity so that the 
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variability between the members of each pair 1s a meas~re of the variability within sample volumes 
of about 2 x IO-3m3, The mean coefficient of variation between the samples was 3 percent. I have 
sampled approximately 1 m3 volumes in 12 different snow layers using both 0.5 x IO-3m3 and 2.3 x 
IO-lm3 sample tubes. There was no difference between' the results obtained with the different tubes, 
and the mean coefficient of variation was 10 . 8 percent. Leafl found that, in volumes of 20 ml, the 
coefficient of variation of water equivalent was 18 percent. Since the measurement of water equi­
valent includes both depth and density variations, we can conclude that the variability of snow 
density within a volume of tens of cubic meters is not much larger than the variability within a 
volume of I m3. 

Although the data are insufficient, it appears that samples taken from snowpits near ava­
lanche starting zones will provide adequate measures of the densities of snow layers in the 
starting zones . It also appears that samples should be taken as widely spaced as possible within 
the pit to insure representative data. 

Brittle Tensile Strength 

There is an obvious relationship between the density of snow and its strength. Since the 
pores in snow cannot support any load, the entire load must be supported by the ice network. On 
a microscopic scale, tensile strength samples would range between zero, for air, and the maximum 
tensile strength of monocrystalline ice. 

Unlike density, the tensile strength of a large volume of snow will not be the mean of a 
large number of random, microscopic subsamples. Problems arise in determining the distribution 
of stresses within a snow sample, but the major complication is that once part of the ice network 
fails, an increased load is thrown onto the remainder and the whole sample is very likely to fail. 
Thus, the strength of a large sample would ,not be the mean of the strengths distributed throughout 
the sample volume, but would be the minimum of the strengths distributed throughout the ice net­
work. Put another way, we are of necessity sampling for an estimate of the minimum strength. 

Suppose that the strength of a large volume (~l m3) of snow could be measured, then the vol­
ume broken up into smaller volumes (~lO-3m3) (without disturbing the distribution of streng'ths) 
and the strengths of the smaller volumes measured. The strength of the larger volume would not 
be the mean of the strengths of the smaller volumes, but would be the extreme low value found 
among them. 

Cracks progagate through the entire slab thickness, which normally has a mean of about 1 m 
(Perla 1971). Stress gradients parallel to the slope are scaled to the slab thickness (Perla 1971, 
Smith 1972) so that a volume of about 1 m3 seems to be the appropriate volume for strength consid­
erations. Obviously, volumes of this size would be extremely difficult to test. 'I.;re are then 
faced with the problem of determining the strengths of these large volumes of snow from smaller 
samples. 

Fortunately, this problem is not unique to snow. A considerable amount of work has been done 
on strength problems of the type where there is a significant variation in the strengths distri­
buted throughout a volume. The arguments given above are essentially those of Heibull (1939) who 
considered the general problem of the strength of nonuniform materials. Strength theories of this 
kind have the graphic name "weakest link" theories, apparently from the statement of Pierce (1926): 
"It is a truism, of which the mathematical implications are of no little interest, that the 
strength of a chain is that of its weakest link." 

Heibull (1939) proposed the cumulative distribution function 

F(a) _ 1 _ e-V (a::u) m, a ?: a 
u 

[1] 

where a is the applied stress, V the volume, and a t a , and m are material 
tribution is truncated in that the probability of ¥ai13re at stresses below 

constants. 
(J is zero . 

u 

This dis-

lPersonal communication wi th Char l es F. Leaf, Rocky Mountain Forest and Range Experiment 
Station, Fort Col l ins. 
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Snow is ser iously weakened by l a rge voids within snow layers , which appear to be formed 
during snow deposition. I have observed voids of approximately l03mm3. Some measure of the size 
and frequency of these larger voids can be gained fr om a comparison of centrifugal t ensile t es ts 
performed using two different sample diameters . Keeler and Weeks (1967), Keeler (1969), and 
Martinelli (1971) performed a total of 592 tests using a sample 60 rom in diameter. They reported 
that about 10 percent of their samples s howed zero strength. Some of the zer o strengths may have 
been due to sample damage, but some undoubtedly resulted when a void cut entirely across the spec­
imen. In contrast I have performed 338 tests using 120 mm samples without observing any zero 
s trengths (Sommerfeld and l.folfe 1972). Thus, voids above 100 to 150 rom in diameter are very rare 
or nonexist ent within snow layers, supporting the idea that the strength distr ibution i s truncated. 

Although the voids probably act as stress concentrators in their vicinity, t he s tr ess is s up­
ported by the sur rounding material. When a sample t ube cuts a vo i d , part or al l of the surrounding 
ma t er ial i s l eft behind and a spuriously l Ol'l strength is measured. Thus, we have the problem that 
the most important values are seriously disturbed by the sampling technique. Furthermore, t he num­
ber of very l ow strength elements in a large volume i s so low that we have no assurance we have 

. sampled the lowest strength in a given volume unless we sample the ent ir e volume. 

An alternative method of predic ting the strength of a large volume of snow comes from 
Weibull's distribution (equation 1). I f all but the few lmV'est sample values of snmV' s trength 
(which may be err oneous as discussed above) in a limited density range are fitted to l.feibull's 
distribution, the cons tants and particularly au can be determined. At very large V t he function 
F(a) (equation 1 ) jumps from zero at a = au t o almost 1 at s tresses just above au' Thus, au 
should be the large-volume strength. Figure 1 sholV's the theoreti cal infinite volume curve in 
comparison with an experimenta l curve obta ined with sample volumes of 2.3 K lO-3mJ, 2 It appears 
that a volume of 1 m3 would fall very close to the infinite volume curve . 

2The reduced s tress (a/am) used in thi s plot el iminates the effect of dens ity differences 
among the samples (Somme rfel d 1971) . 
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Figure 1. Comparison of the probabiZity 
of failu~e vs . ~eduoed stress fo~ mea­
surements on volumes of 2.3 x 10- 3m3 
(solid ourve) and the theoretical curve 
for au infinite volume . 
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To determine au from centrifugal tensile tests, Weibul1 (1939) suggests the function 

1 In In y-:-p + t In a = (m + t) In (a-au) + A(V) [2 ] 

where P is the experimental pr9bability of failure at stress cr and A(V) is a function of the 
sample volume. Equation 2 plots as a family of parallel curves, with different intercepts for 
different volumes. au is determined as the unique value which gives the best fit to a straight 
line with m + t as the slope. 

Table I gives the calculated minimum strengths for various densities and types of snow. The 
snmo1 was c lassified according to the scheme of Sommerfeld and LaChapelle (1970) . Figure 2 shmo1s 
au plotted against mean density with the crystal type indicated at each point. In each case the 
lowest three strength values were discarded, since these values may be spuriously low, as previ­
ously discussed. In every case but the graupel (data group 11) the fit to the straight line was 
improved. In every case the fit to a straight line was very good , the lowest R2 being 0.965 
(fig. 3). A good fit to a straight line shows that the data fit the l~eibull distribution very 
well. Of interest is the fact that the series which represents the normal course of equi­
temperature metamorphism (1, 2, 4, 5, 6) falls on a very good s traight line in figure 2. Because 
case 3 was somewhat windblown and 9 was heavily windblown, they might be expec ted to show higher 
strengths for their densities due t o mechanical reworking . Cases 7 and 8 are dry, temperature­
gradient (TG) snow and 10 is wet TG snow. Here we see that the strength of a TG layer can vary 
over a large range, which is supported by field observations. Graupel (11) gives a lower strength, 
which also agrees with the observations of Perla (1971). 

TABLE I 

DENSITIES AND CALCULATED MINIMUM STRENGTHS (au) 
FOR VARIOUS TYPES OF SNOW 

Case Snow Ave . au 
p 

dynes cm-2 Number Type Kgm-3 

1 IA (PIe, PH) 11 2 5. 38 x 103 

2 IIB2 254 14 . 2/. x 103 

3 IB (I 3aN2A)-+IA1 128 9.53 x 103 

4 IIA 1 - 2 147 9.32 x 103 

5 IIA 1 - 2 228 14.15 x 103 

6 IA (P2s) 73 4 .1 2 x 103 

7 IlIB3 281 15.58 x 103 

8 IlIB 2 - 3 242 4.04 x 103 

9 IB (Il)+IlB2 289 36 .81 x 103 

10 IIlB3+IVAI 331 20.69 x 103 

11 IA (IR3b, 4a, 41» 249 5.60 x 103 
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Figu~e 2. CaZculated minimum strengths (au) VB . density for various types 
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There are also similar but not so pronounced regularities exhibited by the other two con­
stants. However, whatever meaning might be ascribed to such regularities is still a matter of 
conj ec ture . 

Weibul l 's method as applied here boils down to assuming a distribution function (apparently 
chosen by Weibull for mathematical tractibility) that determines a set of constants from a set of 
data points, and uses the final function to extrapolate to an extreme limit. Undoubtedly s uch 
extrapolations are risky, but until data are available on the large-volume strengths of snow, this 
seems to be our only recourse. At least the Weibull analysis of the da ta leads to a fairly simple 
representation of the brittle tensile strength of snow, and that representation is consistent with 
other observations. 

Shear Strength 

Shear-strength measurements show characteristics simil ar to tensile-strength measurements 
(fig. 4). There is very large scatter in the data, but the measurements appear to fall between ' 
two extreme limits. Also, the larger the sample volume, the lower the mean of the measurements! 
Here again the statistics of Weibul l could be applied to determine au for the s hear strengths of 
various types of snow . 

3Persona l communication with Rona ld I. Pe rla, Rocky Mountain Forest and Range Exper iment 
Station, Fo r t Col l ins. 
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The assumption that avalanches are initiated by brittle shear crack propagation in the bed 
surface is open to question. During the formation of a tensile crack, the crack walls physically 
separate and the crack can become unstable and propagate in the manner of a Griffith (1921) fail­
ure. During shear failure, the failing parts are in contact, and friction and crack healing due 

. to new bond formation impede crack grmo1th. For these reasons a quasi-failure (Perla and LaChapelle 
1970) is the likely initiating event. There is a strong possibility that a failure in a small part 
of the bed surface would not propagate elastically, and that the whole bed surface would not fail. 
Under such circumstances Weibull's statistics are not applicable, and the work of Daniels (1945), 
who considered the strengths of bundles of threads, appears to apply. Clearly the failure, at a 
particula( stress, of one thread of a bundle mayor may not lead to failure of the entire bundle 
depending on the strengths of the rest of the threads. Daniels showed that if 8(0) is the proba­
bility density of the breaking stress (0) of n elements, then a total load (S) is related to the 
load on each surviving thread (s) by 

~= 
n 

[3] 

and total failure occurs at the maximum 

1tl o [4] 

ds 

ST ' the value of s at failure, can be found from the probability density f unction, and STint the 
stress at failure, can then be calculated. 

The probability density function for snows of different densities can be derived from Perla's 
measurements. 

The shear strengths measured by Perla for densities between 250 and 300 kg m- 3 were found to 
fit the normal distribution with a mean of 30.0 x 10 3 dynes cm- 2 and a standard deviation ~f 
15.0 x 10 3 dynes cm- 2 • Performing the calculations as in equations 3 and 4, we see that the 
failure stress for an entire layer within this density range, under our assumptions, is 
15.8 x 10 3 dynes cm- 2 , about 53 peTcent of the mean value. 

Conclusions 

The release of a sl ab avalanche is a complicated process. It appears that the initiation 
involves a volume of snow in the range 1 to 10 m3• Field work indicates that it is necessary to 
interact with a volume of this size, with explosives, skiis, snowshoes, etc., to initiate an 
avalanche. Host slabs are about 1 m thick, and stress gradients parallel to the slope are scaled 
to the slab thickness, again indicating that a few cubic meters is the volume of interest for ' 
predicting slab failure. 

Density is an important characteris tic of snow slabs. The stresses within the slab are a 
direct result of the snow weight, and the mechanical properties of snow are related in basic ways 
to the snow density. Density is determined by the mean value of representative samples taken 
within a major layer. Available measurements are not conclusive, but do indicate that the density 
of 1 m3 of snow in a major layer adequately represents the density of that l ayer . 

The failure at the crown of a slab avalanche is undoubtedly brittle tensile fracture 
(Sommerfeld 1969), but the brittle tensile strength of snow cannot be understood in s uch simple 
terms as the density. The relationship of tensile strength to density is clarified by the 
application of "weakest link" strength theories. In particular, the statistics of Weit-ull (1939) 
give a consistent picture of the strength of a large volume of snow. It appears that t.he volume 
of interest in avalanche prediction (1 to 10 m3

) is large enough to be considered an infinite 
volume, and in that case the parameter au 1n the 'I~eibull distribution (equation 1) should be the 
snow strength. This strength has been shown to be a function of density for snows which have 
followed the normal course of equi-temperature metamorphism. Heavily windblown snow and tempera­
ture gradient snow need further study before their strength relationships become clear . 
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An important point which has been i gnored in this study is the significance of the very 
l arge voids caused by rocks and vegetation which penetrate the slab. I know of no work on this 
s ubject , so a t the moment nothing can be said concerning its importance. 

The statistics of the shear strength of snow appear even more complicated. Since the failure 
of a part of the bed surface mayor may not initiate the failure of the entire surface , the s t a­
tistics developed for t he evaluat ion of the strengths of thread bundles may be appropria t e . In a 
limited test, measur ed s hea r strengths (in the density range 250 - 300 kg m- 3

) were found to fit 
a normal dis tribution. Application of t he s tatistics of Daniel s (1945) for the large-volume case 
indi cated that t he bed s urface s hould fa il at about 53 percent of the mean shear strength of s now 
in that density range. 

A complication w'hich was ignored in the analysis is the time dependence of the shear strength 
of a snow layer. If a small part f ail s without initiating total failure, the snow in that part 
can rebond and the failure heal. This rate process might be included by making the shear str ength 
distribution time depend ent, but this has not been attempted. 
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